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Abstract

We develop an efficient, Bayesian Uncertainty Quantification framework us-
ing a novel treed Gaussian process model. The tree is adaptively constructed
using information conveyed by the observed data about the length scales of
the underlying process. On each leaf of the tree, we utilize Bayesian Experi-
mental Design techniques in order to learn a multi-output Gaussian process.
The constructed surrogate can provide analytical point estimates, as well as
error bars, for the statistics of interest. We numerically demonstrate the
effectiveness of the suggested framework in identifying discontinuities, local
features and unimportant dimensions in the solution of stochastic differential
equations.

Keywords: Gaussian Process, Bayesian, Uncertainty quantification,
Stochastic partial differential equations, Multi-output, Multi-element,
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1. Introduction

Uncertainty Quantification (UQ) is a field of great importance in practi-
cally all engineering tasks. Physical models require as input certain param-
eters such as physical constants, equations of state, geometric specification
of objects, boundary conditions, initial conditions and so on. In general,
exact knowledge of these quantities is impossible either due to measurement
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errors or because they are truly random. As a consequence, both the input
parameters as well as the physical responses have to be modeled as random
variables. The goal of UQ is to study the propagation of uncertainty from
the parameter space to the response space. The most celebrated method for
the solution of UQ problems is the Monte Carlo (MC) method. MC’s wide
acceptance is due to the fact that it can uncover the complete statistics of
the solution, while having a convergence rate that is (remarkably) indepen-
dent of the input dimension. Nevertheless, it quickly becomes inefficient in
high dimensional and computationally intensive problems, where only a few
samples can be observed. Such difficulties have been (partially) alleviated
by improved sampling techniques such as Latin hypercube sampling [1] and
multilevel MC [2, 3].

Another approach to UQ is the so called spectral finite element method [4].
It involves the projection of the response on a space spanned by orthog-
onal polynomials of the random variables and the solution of a system of
coupled deterministic equations involving the coefficients of these polyno-
mials. The scheme was originally developed for Gaussian random variables
which correspond to Hermite polynomials (polynomial chaos (PC)). It was
later generalized to include other types of random variables (generalized PC
(gPC)) [5]. Due to the global support of the polynomials used, gPC suffers
from the well-known Gibbs phenomenon in the presence of discontinuities
in the random space. The multi-element generalized polynomial chaos (ME-
gPC) method [6, 7] was introduced in order to address exactly this issue.
The idea of the multi-element (ME) approach is to decompose the stochastic
space in disjoint elements and then employ gPC on each element. However,
the coupled nature of the equations that determine the coefficients of the
polynomials make the application of the method to high input dimensions
extremely difficult (curse of dimensionality).

Throughout the paper, we assume that we have at hand a well-established
computer code that emulates the physical system. In fact, we will investi-
gate the propagation of uncertainty from the input of the computer code to
the output, by learning the response surface using well selected observations.
Any modeling or discretization error will be ignored in this study. The so
called stochastic collocation methods have been designed to deal with this sit-
uation. The response is represented as an interpolative polynomial of the ran-
dom input constructed by calls to the computer code at specific input points.
However, the construction of the set of interpolation points is non-trivial, es-
pecially in high-dimensional settings. In [8], a Galerkin based approximation
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was introduced in conjunction with a collocation scheme based on a tensor
product rule using one-dimensional Gauss quadrature points. Despite its ap-
peal, the method scales badly with the number of random input dimensions.
Alternatively, sparse grids (SG) based on the Smolyak algorithm [9] have a
weaker dependence on the input dimensionality. In [10, 11, 12], the Smolyak
algorithm is employed to build sparse grid interpolants in high-dimensional
input spaces based on Lagrange interpolation polynomials. Similarly to gPC,
such methods also fail to capture local features of the response. From the
above discussion, it is apparent that discontinuities in the stochastic space
must be dealt with using a basis with local support. In [13], the authors de-
veloped an adaptive version of SG collocation (SGC) based on localized hat
functions called Adaptive SGC (ASGC). ASGC is able to refine the sparse
grid only in important regions of the stochastic space, e.g. near a discon-
tinuity. Nevertheless, the piecewise linear nature of the scheme performs
poorly when only a few samples are used while adverse functions can trick
the adaptive algorithm into stopping without converging.

Highly sophisticated computer codes modeling real-life phenomena (like
weather, ocean waves, earthquakes, etc.) might take hours or even days
to complete a single run in massively parallel systems. Therefore, we are
necessarily limited to observing only a few realizations. Motivated by this
situation, we would like to consider the problems of (1) selecting the most
informative observations and (2) quantifying the uncertainty in the predic-
tion of the statistics. From the above mentioned methods, ASGC addresses
only problem (1), albeit in an ad hoc manner. In order to deal with (1)
and (2) in a principled, information theoretic way, a Bayesian framework
is necessary. To this end, we choose to investigate the performance of the
Gaussian process (GP) model. The GP model has been used in computer
experiments in the pioneering work of Sacks [14] (for a more recent review
see the book [15]). GP is particularly interesting, since it provides an an-
alytically tractable Bayesian framework where prior information about the
response surface can be encoded in the covariance function, and the uncer-
tainty about the prediction is easily quantified. It is exactly this uncertainty
in the prediction that can be exploited in order to select the observations to
be made (see [16]), as well as to quantify the uncertainty in the statistics.
One of the drawbacks of GP inference is that it scales as the cube of the
number of observations, making the treatment of large data sets computa-
tionally demanding. Furthermore, the most common covariance functions
used in practice are stationary. The effect of the stationarity assumption is
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that it makes non-stationary responses and localized features (such as dis-
continuities) a priori highly improbable, resulting in an excessive number
of samples being required in order to uncover them. A successful effort to
deal with these difficulties has been carried out in [17]. Based on the parti-
tioning ideas of the Bayesian CART model [18, 19], a treed GP model was
introduced. By making the GP local to each leaf of the tree, the model is
able to process many more samples. Additionally, anisotropy is captured by
considering the true response as being the result of many local stationary
(albeit different) models. More recently, in [20] a novel tree model was intro-
duced using Sequential Monte Carlo inference as opposed to MCMC of the
classical approaches. The latter is a promising step towards computationally
tractable fully Bayesian trees.

In this work, we present a novel non-intrusive UQ framework based on
a treed multi-output Gaussian process (GP). It operates in two stages: (a)
the construction of a surrogate model for the physical response and (b) the
interrogation of this surrogate for the statistics. The building block of the sur-
rogate is a Multi-output Gaussian Process (MGP) introduced in Section 2.1.
Information gathered from the MGP is used to discover important directions
of the stochastic space and decompose it in stochastic elements (i.e. new
leaves of the tree) (Section 2.4). Each stochastic element is, in turn, sampled
using Sequential Experimental Design (SED) techniques (Section 2.5) and
subsequently modeled using a new MGP. This defines an iterative procedure
that gradually resolves local features and discontinuities. The final result is
a piecewise surrogate in the spirit of the Multi-element Method (ME) [6].
Despite being a treed GP, our model differs from the model in [17] in several
aspects: 1) the tree building process is inspired from the ME method rather
than Bayesian CART (non-probabilistic tree), 2) we explicitly derive point
estimates of the missing hyper-parameters by maximizing the marginal likeli-
hood instead of averaging (fast predictions), 3) we treat the multiple outputs
of the response in a unified way (faster training). Furthermore, our model is
built specifically to deal with UQ tasks, in that the input probability distri-
bution plays an important role in the tree construction. Finally, the resulting
surrogate can be used to obtain semi-analytic estimates of the moments of
any order as well as error bars (Sections 2.2 and 2.3).
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2. Methodology

Let X ⊂ R
K for some K ≥ 1 represent the stochastic input space, a

(potentially infinite) rectangle of RK , i.e. X = ×K
k=1[ak, bk],−∞ ≤ ak < bk ≤

∞. We will assume that there is a probability density p(x) defined for all
x ∈ X such that:

p(x) =
K
∏

k=1

pk(xk), (1)

where pk(xk) is the probability density pertaining to the k-th dimension.
That is, the components of x are independent random variables. This as-
sumption is very common in UQ settings and can be made to hold by a
transformation of the input space. We now consider the multi-output func-
tion f : X → R

M representing the result of a computer code (deterministic
solver) modeling a physical system, i.e. at a given input point x ∈ X the
response of the system is f(x). We will write

f(·) = (f1(·), . . . , fM(·)),
and refer to fr(·) as the r-th output of the response function, r = 1, . . . ,M . In
this work, we will identify f(·) as the true response of an underlying physical
system and we will ignore any modeling errors. The input probability dis-
tribution induces a probability distribution on the output. The UQ problem
involves the calculation of the statistics of the output y = f(x). Quanti-
ties of interest are the moments mq = (mq

1, . . . , m
q
M), defined for q ≥ 1 and

r = 1, . . . ,M by:

mq
r :=

∫

X

f q
r (x)p(x)dx, (2)

as well as functions of them. In particular, the mean m = (m1, . . . , mM):

mr := m1
r =

∫

X

fr(x)p(x)dx, (3)

and the variance v = (v1, . . . , vM):

vr :=

∫

X

(fr(x)−mr)
2 p(x)dx = m2

r − (m1
r)

2. (4)

The statistics will be calculated by interrogating a surrogate of f : X →
R

M . This will be put together from local surrogates defined over elements of
the stochastic space Xi ⊂ X such that:

X = ∪Ii=1X
i and int(Xi) ∩ int(Xj) = ∅, ∀i, j ∈ I, i 6= j, (5)
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where int(Xi) denotes the interior of the set Xi under the usual Euclidean
metric of RK . The response surface is correspondingly decomposed as:

f(x) :=
I
∑

i=1

f i(x)1Xi(x), (6)

where 1Xi(x) is the indicator function of Xi, given by:

1Xi(x) =

{

1 if x ∈ Xi,

0 otherwise
,

and f i(·) is just the restriction of f(·) onXi. The local surrogates will be iden-
tified as Multi-Output Gaussian Processes (MGP) defined over the stochastic
element Xi. These MGPs will be trained by observing f i(·). The predictive
mean of the MGPs will be used to derive semi-analytic estimates of all mo-
ments mq. An addendum of the Bayesian treatment, is the ability to provide
error bars for the point estimates of the moments. This feature is absent
from most current UQ methods.

Our aim is to create a surrogate by making as few calls to the computer
program as possible. This is achieved by an interplay of adaptively decom-
posing the domain (Tree Construction) and selecting which observations to
make within each element (Experimental Design). These decisions should
be biased by the underlying input probability density p(x) and the observed
variability of the responses.

In the sections that follow, we introduce the constituent parts of our
framework. Despite the fact that the method is applicable to any distribution
p(x) over X, all numerical examples will be conducted on a compact X (ak
and bk are finite) using the uniform distribution. This is mainly due to the
fact that the implementation of the framework is considerably easier for this
case. We plan to investigate and report the dependence of the results on
p(x) in a future work.

2.1. Multi-output Gaussian Process Regression

We turn our focus to a single element of the stochastic space Xi ⊂ X and
discuss the construction of a local surrogate model based on some already
observed data. The choice of the elements is the subject of Section 2.4 and
how the observations are selected is investigated in Section 2.5. All quantities
introduced herein are local to the element Xi. However, in order to avoid
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having an unnecessarily complicated notation, we do not explicitly show this
dependence.

We assume that we have observed a fixed number N ≥ 1 of data points

D :=
{

(x(n),y(n)
}N

n=1
, (7)

where, y(n) = f(x(n)) is the result of the computer program with input x(n).
We will fit these data to a Gaussian Process (GP) model [21, 22], a proce-
dure known as GP Regression (GPR). Our primary concern in this section
is to extend GPR to the multi-output case. The naive approach would be
to model its output dimension independently. However, since the various
outputs of the response function are highly correlated, this strategy will in-
cur some loss of information. Furthermore, training a GP on N data points
involves the computation of the Cholesky decomposition of an N × N sym-
metric positive-definite matrix, an operation that scales as O(N3). If the M
output dimensions were to be modeled independently, then the total train-
ing cost would be O(MN3) making the method inappropriate for most UQ
tasks. Several techniques exist that model the correlation between outputs:
e.g. ‘co-kriging’ (Section 3.2.3 in [23]) or introducing latent (hidden) out-
puts [24, 25, 26]. Unfortunately, these models are still fairly complicated
and computationally demanding. In [27], a principal components analysis
(PCA) was performed on the output space and then the PCA coefficients
of the simulations were modeled using independent GPs. This approach has
been proven efficient in dealing with high-dimensional output settings, since
it automatically takes care of output correlations. However, it introduces an
additional error arising from the finite truncation of the PCA decomposition
of the output field. Furthermore, it is not clear how the approach can be
used in a SED setting, in which simulations arrive one by one, as well as how
it performs when discontinuities are present in the stochastic space. A very
recent, theoretically sound way of modeling multiple outputs was developed
in [28]. In this approach, the multidimensional response is modeled as a GP
vector using the same covariance function for each dimension. It accounts
for correlations by introducing a constant correlation matrix between the
outputs. However, in very high-dimensional settings (typical UQ applica-
tions have a few thousand outputs), dealing with the full correlation matrix
is computationally challenging. Since in this work we are trying to develop
a method that will be able to deal with output dimensions that range from
a few hundreds to a few thousands, keeping the training time to acceptable
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levels is one of our major goals. We achieve this by making a compromise:
the outputs will be treated as conditionally independent given the covariance
function. Our approach is similar to that in [28] if a diagonal correlation
matrix and a constant mean is used. The underlying assumption is that the
regularity of all output dimensions is approximately the same. Since each
output may vary in signal strength (e.g. finite element nodes close to a fixed
boundary condition exhibit smaller variations compared to ones in the middle
of the domain), we have to work with a scaled version of the responses. The
computational savings of using a single covariance function for all outputs
are tremendous: only a single Cholesky decomposition is required, dropping
the training cost back to O(N3). We call the resulting model a Multi-output
Gaussian Process (MGP) and refer to regression using MGPs as MGPR.

Let us introduce the observed mean:

µobs,r =
1

N

N
∑

n=1

y(n)r , (8)

and the observed variance:

σ2
obs,r =

1

N

N
∑

n=1

(yr − µobs,r)
2, (9)

of the dataD. We will be modeling the scaled response functions gr : X
i → R,

defined by:

gr(x) =
fr(x)− µobs,r

σobs,r
, r = 1, . . . ,M. (10)

The scaling is necessary, because the various outputs might exhibit different
signal strengths. Obviously, this definition depends on the actual observa-
tions. We expect, however, that if N is big or if the stochastic element under
investigation is small, then it is a good approximation to the ideal scaling,
i.e. zero mean and unit variance for all outputs. Assuming that all outputs
have the same regularity, we model each gr as a Gaussian Process with zero
mean and covariance function c(x,x′; θ):

gr(x)|θ ∼ GP (0, c(x,x′; θ)) , r = 1, . . . ,M,

where θ ∈ Θ ⊂ R
S are the S ≥ 1, unknown hyper-parameters of the co-

variance function. That is, the scaled responses are treated as conditionally
independent given the hyper-parameters.
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Point Estimates of the Hyper-parameters. A fully Bayesian approach would
proceed by imposing a prior probability π(θ) over the hyper-parameters and
then average (numerically) over them. Instead, we will employ the evidence

approximation to Bayesian inference [29], in order to obtain point-estimates
of the hyper-parameters by maximizing the marginal likelihood of the data
(Ch. 5 of [22]). This necessarily underestimates the prediction uncertainty,
but it is a trade-off we are willing to make in order to obtain a computation-
ally tractable model. The logarithm of the marginal likelihood of each scaled
response gr(·), r = 1, . . . ,M is given by:

log p(zr|D, θ) = −
1

2
zTr C

−1zr −
1

2
log |C| − N

2
log 2π,

where zr = (z
(1)
r , . . . , z

(N)
r ) is a scaled version of the observations in D:

z(n)r =
y
(n)
r − µobs,r

σobs,r
, n = 1, . . . , N, (11)

C = (Cij), Cij = c(x(i),x(j); θ) is the covariance matrix and |C| its determi-
nant. Since the scaled responses are conditionally independent given θ, the
logarithm of the joint marginal likelihood is simply the sum of the marginal
likelihoods of each output, i.e.

L(θ) := log p(z1, . . . , zM |X, θ)

=
M
∑

r=1

log p(zr|X, θ)

= −1
2

M
∑

r=1

zTr C
−1zr −

M

2
log |C| − NM

2
log 2π.

Thus, a point estimate of θ over the element Xi is obtained by

θ
∗ = argmax

θ∈Θ
L(θ). (12)

The joint marginal likelihood L(θ) might exhibit multiple maxima which
correspond to alternative interpretations of the data. In practice, we make an
educated initial guess and we are satisfied with the (local) maximum obtained
using a Conjugate Gradient method [30]. The specifics of the optimization
method are discussed in Appendix A.
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The Predictive Distribution. Having decided on a point estimate for the
hyper-parameters θ, we are ready to predict the scaled response at any test
point x ∈ Xi. Scaling back to the original responses, we can easily see that
the predictive distribution of fr(x) is:

fr(x)|D, θ∗ ∼ N
(

µfr(x; θ
∗), σ2

fr(x; θ
∗)
)

, (13)

with mean:
µfr(x; θ

∗) = σobs,rc
TC−1zr + µobs,r, (14)

and variance:

σ2
fr(x; θ

∗) = σ2
obs,r

(

c(x,x; θ∗)− cTC−1c
)

, (15)

where c = (c(x,x(1); θ∗), . . . , c(x,x(N); θ∗)) and the covariance matrix C is
evaluated at θ∗. We will refer to σ2

fr
(x; θ∗) as the predictive variance of the

response at x. It represents our uncertainty about the prediction at this
particular test point.

As mentioned earlier, the predictive mean µfr(x; θ
∗) given by Eq. (14)

will be used to provide estimates for the statistics over the element Xi, while
the predictive variance σ2

fr(x; θ
∗) will give error bars (see Section 2.2). Notice

that µfr(x; θ
∗) is, in fact, a kernel estimator since:

µfr(x; θ
∗) =

N
∑

n=1

αrnc(x
(n),x; θ∗) + µobs,r, (16)

where the weights αrn are given by:

αr ≡ (αr1, αr2, . . . , αrN) := σobs,rC
−1zr,

and also depend on θ
∗ through C.

2.2. Calculation of the local statistics

As in the previous section, we focus on a specific element Xi. All quan-
tities are again local to Xi. In order to keep notational complexity to a
minimum, we do not explicitly show this dependence. We will derive an-

alytic point estimates as well as error bars for the mean and the higher
moments of the response based on the linear point estimator of f(·) over Xi
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given in Eq. (16) and the predictive variance Eq. (15). To be exact, we are
interested in estimating all moments mq = (mq

1, . . . , m
q
M), q ≥ 1, where

mq
r =

∫

Xi

f q
r (x)p

i(x)dx. (17)

pi : X→ R is the conditional probability density related to Xi:

pi(x) :=
p(x)

P (Xi)
1Xi(x), (18)

where P (Xi) is the probability of an input point residing in the stochastic
element Xi, i.e.

P (Xi) =

∫

Xi

p(x)dx.

In order to achieve analytic estimates of mq, we keep concurrent MGP
estimates of the response raised to the q power. In particular, the q power
of the response is treated also as a MGP with its own hyper-parameters θq.
Let us denote the predictive distribution for the q power of the response at
x ∈ Xi by:

f q
r (x)|D, θq ∼ N

(

µfq
r
(x; θq), σ2

fq
r
(x; θq)

)

,

where µfq
r
(x; θq) is the predictive mean and σ2

fq
r
(x; θq) the predictive variance

for r = 1, . . . ,M . These quantities are available through the exact same
procedure described in Section 2.1, using the q power of the response instead
of the response itself. For convenience, let us write the predictive mean at x
as:

µfq
r
(x; θq) =

N
∑

n=1

αq
rnc(x

(n),x; θq) + µq
obs,r,

and the predictive variance at x as:

σ2
fq
r
(x; θq) = (σq

obs,r)
2
(

c(x,x; θq)− cq,T (Cq)−1cq
)

,

where µq
obs,r and σq

obs,r are defined as in Eqs. (8) and (9), respectively, using

the q power of the observed response, cq = (c(x(1),x; θq), . . . , c(x(N),x; θq))
and Cq is the covariance matrix evaluated at θq.

Our goal is to derive a predictive probability distribution for the mo-
ments mq given the data and the hyper-parameters. In a proper probabilis-
tic treatment, we would proceed by sampling the full posterior of the MGP,
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integrating the samples over x and producing a Monte Carlo estimate of the
predictive mean and variance of each moment. To obtain analytic estimates,
let us make the simplifying assumption that the predictions at different in-
put points x are conditionally independent given the data and the hyper-
parameters. Then, by the additivity of independent normal variables, we
arrive at the approximation:

mq
r|D, θq ∼ N

(

µmq
r
, σ2

mq
r

)

, (19)

where the predictive mean of mq
r is:

µmq
r
=

∫

Xi

µfq
r
(x; θq)pi(x)dx, (20)

and its predictive variance:

σ2
mq

r
=

∫

Xi

σ2
fq
r
(x; θq)pi(x)dx. (21)

Fortunately, the integrals involved can be expressed in terms of expectations
of the covariance function with respect to the conditional input distribution.
This results in a fast, semi-analytic estimate of µmq

r
and σmq

r
. It is worth

mentioning at this point that this distribution is necessarily wider than the
optimum one.

Remark 1. Obviously, the assumption that a positive function, e.g. the
response fr raised to an even power, is a Gaussian Process is not optimal,
since the predictive distribution assigns positive probability to the event of
the function getting negative values. However, this assumption is necessary in
order to obtain analytic estimates of the predictive distribution of the statis-
tics. A direct consequence of it is that the predictive distribution Eq. (19)
for an even moment has also positive probability of being negative. A tighter
predictive distribution can always be found by truncating Eq. (21) below
zero. On the other hand, the predictive mean of an even moment will always
be positive.

Evaluation of the integrals. We now proceed to the calculation of the integrals
in Eqs. (20) and (21). We can write the following:

µmq
r
=

N
∑

n=1

αq
rnǫ

q
n + µq

r, (22)
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and

σ2
mq

r
= (σq

obs,r)
2

(

cq −
N
∑

n,l=1

(Cq)−1
nl ν

q
nl

)

, (23)

where

ǫqn =

∫

Xi

c(x(n),x; θq)pi(x)dx, (24)

cq =

∫

Xi

c(x,x; θq)pi(x)dx, (25)

νqnm =

∫

Xi

c(x,x(n); θq)c(x,x(l); θq)pi(x)dx, (26)

and (Cq)−1
nl is the nl element of the inverse q covariance matrix (Cq)−1.

Thus, computation of the statistics requires the evaluation of integrals of
the form of Eqs. (24), (25) and (26). In Appendix A, we provide analytic
formulas for their calculation for the special case of uniform input distribution
and Squared Exponential (SE) covariance function. For the SE covariance
function but arbitrary input probability density of the form of Eq. (1), their
evaluation requires O(K) one-dimensional numerical integrations.

2.3. From local to global statistics

In the same spirit as the multi-element methods [6, 7, 31], we combine
the statistics over each stochastic element in order to obtain their global
analogues. Since we now work over the whole domain, we will explicitly mark
the dependence of the underlying quantities on the element Xi, i = 1, . . . I.
Let mq,i

r be the q moment of the response that pertains to the conditional
probability density pi(x) (Eq. (17)) and mq

r be the global one (Eq. (2)).
Notice that mq

r can be decomposed as

mq
r =

∫

X

f q
r (x)p(x)dx

=

I
∑

i=1

∫

Xi

f q
r (x)

p(x)

P (Xi)
dxP (Xi)

=
I
∑

i=1

∫

Xi

f q
r (x)p

i(x)dxP (Xi),
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or

mq
r =

I
∑

i=1

mq,i
r P (X

i). (27)

Now, assume that for each element Xi, i = 1, . . . I we have obtained a predic-
tive distribution (Eq. (19)) for mq,i

r and let its predictive mean and variance
be µmq,i

r
and (σmq,i

r
)2, respectively (Eqs. (22) and (23)). Assuming condi-

tional independence of the predictive distributions given the data and the
hyper-parameters, we obtain that:

mq
r|D, θq ∼ N

(

µmq
r
, σ2

mq
r

)

, (28)

where the predictive mean is:

µmq
r
=

I
∑

i=1

µmq,i
r
P (Xi), (29)

and the predictive variance:

σ2
mq

r
=

I
∑

i=1

σ2
mq,i

r
P (Xi). (30)

Again, truncation of this distribution below zero for even q, always yields an
improved estimator (see Remark 1).

Finally, we derive a normal approximation to the predictive distribution
for the variance of the response v = (v1, . . . , vM) (defined in Eq. (4)):

vr ∼ N
(

µvr , σ
2
vr

)

. (31)

Under the assumption of conditional independence of mq
r, q = 1, 2, the pre-

dictive mean of vr is given by:

µvr := E
[

m2
r − (m1

r)
2|D, θ1, θ2

]

= E
[

m2
r

∣

∣D, θ1, θ2]−E
[

(m1
r)

2|D, θ1, θ2
]

,

or:
µvr = µm2

r
− µ2

m1
r
− σ2

m1
r
, (32)
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where E[·|D, θ1, θ2] denotes the expectation with respect to the joint pre-
dictive distribution for m1

r and m2
r . Equivalently, the predictive variance

is:

σ2
vr := V

[

m2
r − (m1

r)
2|D, θ1, θ2

]

= V
[

m2
r|D, θ1, θ2

]

+V
[

(m1
r)

2|D, θ1, θ2
]

= V
[

m2
r|D, θ1, θ2

]

+ E
[

(m1
r)

4|D, θ1, θ2
]

−
(

E
[

(m1
r)

2|D, θ1, θ2
])2

,

or:
σ2
vr = σ2

m2
r
+ 4µ2

m1
r
σ2
µ1
r
+ 2σ4

µ1
r
, (33)

where V[·|D, θ1, θ2] denotes the variance with respect to the joint predictive
distribution of m1

r and m2
r .

Let us end this section by mentioning that the above procedure can be
easily applied to obtain normal approximations to the predictive distributions
of any centered moment. It is obvious that the calculation can always be
casted in terms of moments of the normal distribution which are readily
available using the confluent hypergeometric function U(a, b, x) (see Ch. 13
of [32]).

2.4. Adaptivity

In this section, we develop an iterative procedure to adaptively decompose
the stochastic space in smaller elements. The initial step of this procedure
starts by considering a single element, i.e. X itself. Here, we assume that we
are already given a decomposition of the domain as well as a local surrogate
model on each element. The decision we wish to make is whether or not
to refine a given element and in which way. We develop refinement criteria
that are based solely on information gathered by the current surrogate model
and no further calls to the deterministic solver are required. The Bayesian
predictive variance Eq. (15) is used to define a measure of our uncertainty
about the prediction over the whole domain X. We show how this measure
can be broken down to contributions coming from each element. Based on
this observation, we derive a criterion that suggests refinement of an element
if its contribution to the global uncertainty is larger than a pre-specified
threshold. For the sake of simplicity, we only consider rectangular elements
and refine them by splitting them perpendicular to the dimension of greatest
importance in two pieces of equal probability. The importance of a particular
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dimension is characterized by its length scale. The length scales are identified
as the hyper-parameters of a SE covariance function.

Suppose that we have already a decomposition of the stochastic domain
X in rectangular elements Xi, e.g.

Xi = [ai1, b
i
1]× · · · × [aiK , b

i
K ],

with aik < bik, k = 1, . . . , K, i = 1, . . . , I such that Eq. (5) holds. Furthermore,
assume that we have already learnt the local surrogates on each element Xi.
Let σ2

f i
r
(x) be the predictive variance of the r = 1, . . . ,M output of the

local surrogate of f i at x ∈ Xi (Eq. (15)). By the conditional independence
assumption for the predictive distribution over each element and Eq. (6), the
predictive variance of the r = 1, . . . ,M dimension of the global surrogate
σ2
fr
(x) at x ∈ X is given by:

σ2
fr(x) =

I
∑

i=1

σ2
f i
r
(x)1Xi(x). (34)

Its average over r,

σ2
f
(x) :=

1

M
σ2
f i
r
(x),

is a measure of our uncertainty about the prediction of all outputs simulta-
neously at the test point x ∈ X . Taking the expectation of this quantity
with respect to the input probability density p(x), we obtain

σ2
f ,p :=

∫

X

σ2
f
(x)p(x)dx. (35)

This quantity is a measure of our uncertainty about our prediction over the
whole domain X. Notice that, in σ2

f ,p, the uncertainty of the model at x is
weighted by its probability of occurrence p(x). Intuitively speaking, we are
willing to accept a somewhat less accurate surrogate in regions of the space
occurring with lower probability. Using Eq. (34), it is straightforward to see
that:

σ2
f ,p =

I
∑

i=1

σ2
f ,piP (X

i), (36)

where

σ2
f ,pi :=

∫

Xi

σ2
f
(x)pi(x)dx,

16



is the uncertainty of our prediction over the elementXi. Making use of Eq. (21)
for q = 1, we obtain that:

σ2
f ,pi =

1

M

M
∑

r=1

σ2
m1,i

r
. (37)

Hence, σ2
f ,pi relates directly to our uncertainty about the mean response σ2

m1,i
r

(Eq. (23)). Generalizing, we can define the corresponding uncertainties for
the response raised to the q ≥ 1 power (see Section 2.3):

σ2
fq ,p :=

I
∑

i=1

σ2
fq,piP (X

i), (38)

where

σ2
fq ,pi :=

1

M

M
∑

r=1

σ2
mq,i

r
. (39)

This measure is equivalent to our uncertainty about the q-th moment of the
response. Our idea it to refine the element Xi, if the contribution to the
global uncertainty coming from it, is greater than a certain threshold δ > 0,
that is we refine Xi if:

σ2
fq,piP (X

i) > δ, for any q = 1, 2, . . . , (40)

depending on how many moments one wishes to consider. However, in the
numerical examples of the present work, we simply use the criterion for q = 1,
despite the fact that we report also the variance. We plan to investigate its
dependence on q in a later work.

The above criterion specifies whether or not an element Xi should be
refined. As already mentioned, we refine elements by cutting them in equally
probable parts perpendicular to ‘the most important dimension’. At this
point, we attempt to give a precise meaning to the concept of ‘the most
important dimension’. Towards this goal, we will exploit the properties of a
specific parametric form for the covariance function, the Squared Exponential
(SE):

cSE(x,x
′) = s2f exp

(

−1
2

K
∑

k=1

(xk − x′k)2
ℓ2k

)

, (41)
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where sf > 0 can be interpreted as the signal strength and ℓk > 0 as the
length scale of each stochastic input. These parameters can be learnt from
the data by using the evidence approximation (see Section 2.1), allowing the
determination of the relative importance of each dimension. The technique is
called automatic relevance determination (ARD). It originated in the Neural
Networks literature [33] and was later extended to GP Regression [34]. We
emphasize that a unique set of the SE hyper-parameters is learnt on each
element Xi (as well as for each power of the response, f q, that we take into
account). Hence, despite the fact that each local surrogate is a stationary
GP, the global surrogate is non-stationary. This is similar in spirit to the
Bayesian Treed Gaussian Process Model in [17].

Let us explicitly denote the learnt length scales of element Xi correspond-
ing to the MGP that represents f , with ℓik, k = 1, . . . , K. The length scales of
the powers of the response, f q, q > 1, are not involved in the criterion we are
about to formulate. Furthermore, let us introduce the probability P i

k that
the k-th dimension xk of a random input point x ∈ X falls inside Xi:

P i
k :=

∫ bi
k

ai
k

pk(xk)dxk. (42)

In general, this has to be evaluated numerically. For the special case of
uniform distribution on a rectangular X, we obtain:

P i
k =

bik − aik
bk − ak

.

We define the importance I ik of the dimension k of the element Xi to be:

I ik = P i
k/ℓ

i
k. (43)

Intuitively, the importance of a particular dimension is inversely proportional
to the inferred length scale and proportional to the probability mass along
that dimension trapped within the stochastic element. Thus, if Xi needs
refinement (i.e. satisfies Eq. (40)), we cut it perpendicular to the most im-
portant dimension k∗, given by:

k∗ = argmax
k
I ik. (44)

In order to have two new elements with the same probabilities of occur-
rence, the splitting point is given by the median of the marginal conditional
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distribution of Xi along dimension k, pik(xk) defined by:

pik(xk) =
pk(xk)

∫ bi
k

ai
k

pk(x′k)dx
′
k

1[ai
k
,bi

k
](xk). (45)

This is a root finding problem that can easily be solved using a bisection
algorithm. For the special case of the uniform distribution, the splitting
point trivially becomes:

x∗k =
1

2
(aik + bik).

Remark 2. The particular splitting criterion based on the inferred length
scales is not the only possibility. Despite being intuitively appealing, it re-
mains an ad hoc choice. Nevertheless, its computational evaluation time is
negligible and we have empirically shown that it results in decompositions
that concentrate around important features of the response. Of course, its
performance depends crucially on predicting correctly the length scales.

2.5. Collection of the observations

In this section, we discuss how the data within an element are collected.
We have to consider two distinct cases:

1. No data have been observed yet and we only have a single element (i.e.
X itself).

2. We have obtained a fit of the response over an element Xi based on N i

observations
Di = {(xi,(n),yi,(n))}N i

n=1,

and we have decided to split it in two elements Xi,1 and Xi,2 so that

Xi = Xi,1 ∪Xi,2 and Xi,1 ∩Xi,2 = ∅.

Let N ≥ 1 be the maximum number of observations per element we wish to
consider within each element and δ > 0 be the desired uncertainty tolerance
of each element (see Eq. (40)). We deal with the first case (no observations
made so far), by simply observing N random data points drawn from the
input probability distribution p(x). In the second case, we wish to utilize
the MGP we already have for Xi, in order to make the most informative
selection of new data points. This procedure is known in the literature as
Experimental Design (ED).
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The ED problem can be formulated in a Bayesian framework in terms
of maximizing the expectation of a utility function (see [35] for a good re-
view of Bayesian ED). If we observe the data points one by one and update
the model each time, then the procedure is termed Sequential Experimental

Design (SED). In the machine learning literature SED is known as Active

Learning (AL). According to MacKay [29], if the utility function we choose
is the change in entropy of the posterior of the hyper-parameters θ, then -
under the evidence approximation - the most informative input point corre-
sponds to the one that maximizes the predictive variance of the model. This
criterion is termed Active Learning MacKay (ALM). An alternative to ALM
is Cohn’s criterion (ALC) [36], which proceeds by choosing the input point
that maximizes the expected change in output predictive variance over the
whole domain. ALC has the advantage that it allows one to weight the input
space by a probability distribution, which in our setting would naturally be
the input probability distribution of the element Xi. ALC has also been nu-
merically shown to perform better than ALM (for a comparison of ALM and
ALC see [37] and the corresponding discussion in [38]). However, ALC is not
based on a decision theoretic foundation and it is much harder to implement.
In this work - mainly for computational purposes - we choose to work with
ALM. We now, describe its extension to the multi-output case.

We start, by splitting the observed data in two sets Di,l, l = 1, 2 according
to which element the inputs belong to, i.e.

Di,l = {(x,y) ∈ Di : x ∈ Xi,l}, l = 1, 2.

Let θ∗ be the hyper-parameters of the MGP overXi and σ2
fr
(x; θ∗) be the cor-

responding predictive variance of the r-th output at x ∈ Xi given by Eq. (15).
Throughout the SED procedure, the hyper-parameters will be kept constant.
Without loss of generality, we work with the left child of Xi, Xi,1. The right
child is treated similarly. We will be sequentially observing xnew,m and the
corresponding responses ynew,m = f(xnew,m) for m = 1, 2, . . .. Let the set of
observations residing in Xi,1 be:

Di,1,n = Di,1 ∪ {xnew,m : m = 1, . . . , n}, n ≥ 1,

where Di,1,0 = Di,1. Denote by σ2
fr
(x; θ∗,Di,1,n) the predictive variance of the

r-th output when Di,1,n is taken into account. From Eq. (15), it is apparent
that σ2

fr
(x; θ∗,Di,1,n) depends only on the observed input points and not on

the responses. Furthermore, since θ∗ remains constant, the inverse covariance
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matrix can be estimated sequentially at each step without the need to perform
a Cholesky decomposition (see [21]). The extension of ALM to the multi-
output case is as follows: given Dn

i,1, observe the input point xnew,n+1 ∈ Xi,1

that maximizes the joint uncertainty of all outputs:

σ2
f
(x; θ∗;Di,1,n) =

1

M

M
∑

r=1

σ2
fr(x; θ

∗,Di,1,n). (46)

That is,
xnew,n+1 = arg max

x∈Xi,1
σ2
f
(x; θ∗;Di,1,n). (47)

In an effort to introduce a bias from the input probability distribution, we
suggest using:

xnew,n+1 = arg max
x∈Xi,1

σ2
f
(x; θ∗;Di,1,n)p(x), (48)

which causes low probability regions to be ignored. Of course, for the uniform
case the two criteria are equivalent. We stop, either if N data points have
been collected in Di,1,n, or if:

σ2
f ,pi,1(Di,1,n)P (Xi,1) ≤ δ, (49)

where σ2
f ,pi,1(Di,1,n)P (Xi,1) is the expectation of σ2

f
(x; θ∗;Di,1,n) with respect

to the conditional probability pi,1(x) of Xi,1 (in the same spirit as it was used
in Section 2.4).

The optimization problem in Eq. (48) is relatively hard and involves sev-
eral local maxima. Instead of solving it with a direct method, we use a
simple Monte Carlo procedure to obtain an approximate solution. We draw
NtextALM random samples in Xi,1, evaluate the product of the predictive
variances and the input probability density (Eq. (46)) and select the one
yielding the greatest result. This is affordable, since σ2

f
(x; θ∗;Di,1,n) is cheap

to evaluate.

2.6. A complete view at the framework

In this final section, we put together the building blocks of our scheme and
discuss the algorithmic details and possible parallelization strategies. The
basic input required is the maximum number of observations per element
N and the tolerance δ > 0, used for the refinement criterion (Eq. (40)) as
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Algorithm 1 The complete surrogate building framework

U ← {(X, ∅, ∅)}.
C ← ∅.
while U 6= ∅ do
Remove (Xi,Di,Mi) from U .
if Mi = ∅ then
Observe N random points drawn from pi(x) Eq. (18).

else

while |Di| < N or Eq. (49) not satisfied for δ do

Add an observation to Di using the ALM procedure (Eq. (48)).
UpdateMi to take into account the new data in Di.

end while

end if

Refit the hyper-parameters ofMi using only the data inDi (Section 2.1).

if Refinement criterion of Eq. (40) is satisfied for δ then

Split Xi in Xi,1 and Xi,2 according to Eq. (44).
Let Di,1 and Di,2 to be the set observations residing in Xi,1 and Xi,2,
respectively.
U ← U ∪ {(Xi,1,Di,1,Mi), (Xi,2,Di,2,Mi)}.

else

C ← C ∪ {(Xi,Di,Mi)}.
end if

end while

well as the stopping criterion of ALM (Eq. (49)). An additional input is the
number of MC samples used to approximate the solution to Eq. (48) (last
paragraph of Section 2.5), which we fix to NALM = 10000.

Our scheme works in one element cycles that comprise of collecting ob-
servations (randomly or using ALM (Section 2.5)), fitting (Section 2.1) and
adapting (Section 2.4). Let us denote with Xi a stochastic element, Di the
observations made on Xi and Mi the MGP fitted over Xi using Di. Let C
be the set of triplets (Xi,Di,Mi) for which the refinement criterion Eq. (40)
is not satisfied. We will refer to C as the set of completed triplets. The rest of
the triplets are put in U , called the set of uncompleted triplets. With |Di| we
denote the number of observations inside Di. Algorithm 1 provides a serial
implementation of the scheme.
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Parallelization of Algorithm 1 is relatively easy. Each node p, has its own
set of completed Cp and uncompleted Up elements. Initially the root node
p = 0 starts as in Algorithm 1 and the rest with Up = ∅, Cp = ∅, p 6= 0.
Then, everything proceeds as in Algorithm 1 with load re-balancing at the
end of each outer iteration (uncompleted elements are sent to processors with
Up = ∅).

Remark 3. The choice of the maximum number of samples per element N
is a crucial parameter to the scheme. Its optimal value depends in a compli-
cated way on the (a priori unknown) smoothness of the underlying response
as well as the number of hyper-parameters S. Its importance is more ev-
ident on the very first element of the scheme because it drives the rest of
the tree construction as well as the Active Learning procedure. If a small
value is used, then local features may be lost, while a very big value may
result in redundant information. Similar problems are present in practically
all UQ schemes. For example, ME-gPC depends on the polynomial degree
and ASGC depends on which level of the Sparse Grid is adaptivity initiated.
On the other hand, N makes our method computationally tractable, since
it bounds above the dimensions of the covariance matrices that need to be
inverted. A theoretical analysis of the optimal value of N is highly desirable,
but clearly beyond the scope of the present work. In the engineering prob-
lems that we are interested in, one usually already has a rough idea about
the smoothness of the problem based on some preliminary simulations. For
smooth problems, using N ≈ 2K, whereK is the number of input dimensions
gives satisfying results (see the Elliptic and Natural Convection numerical ex-
amples in Section 3). For problems with local features, a slightly bigger value
must be used. Empirically, we fix δ to a high value (e.g. δ ≈ 10−1), we start
with N = 2K and increase N gradually until the results do not change any
more. For this final N , we decrease δ and resume the scheme.

3. Numerical Examples

All examples are run on massively parallel computers at the National En-
ergy Research Scientific Computing Center (NERSCC). The parallelization
strategy is straightforward: each processor is assigned to work with a sin-
gle element. The communication burden between the processes is minimal.
Our implementation utilizes extensively the Trilinos library [39] as well as
GSL [40].
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The ultimate goal of the numerical examples is to demonstrate that the
method can:

1. learn non-stationary surfaces,

2. deal with discontinuities,

3. identify localized features of the response and

4. reduce sampling frequency on unimportant input dimensions.

Whenever possible, we will compare our results with Sparse Grid Collocation
(SGC) and Adaptive Sparse Grid Collocation (ASGC) [13]. Each method will
be evaluated by considering an error measure of the predictive surface or of
the statistics, as a function of the number of sample points used. In Sec-
tion 3.1, we investigate the performance of our method in learning three
synthetic functions. In Sections 3.2, 3.3, 3.4, we apply our method to UQ
problems. In all problems, the underlying input probability distribution p(x)
is understood to be the uniform distribution over the input domain. The co-
variance function we use, is the SE with a nugget g2 = 10−6 (The nugget is
required for numerical stability. See the discussion in Appendix A for more
details.). All tasks start with a single element (the input domain itself) and
N random samples drawn from the input distribution. N , is also the max-
imum number of samples taken within an element and is different for each
example (See Remark 3 for to see how N can be chosen). From that point,
the algorithm proceeds until a pre-specified tolerance δ > 0 is reached. The
refinement criterion is given by Eq. (40) for q = 1. The same tolerance δ is
used to stop the ALM procedure of Section 2.5 (see Eq. (49)). The solution
to the optimization problem of ALM (Eq. (48)) is approximated by drawing
NALM = 10000 samples in Xi, evaluating σ2

f
(x; θ∗;Di,1,n) and selecting the

one with the maximum value. The parameters of the method are g,N,NALM

and δ.

3.1. Simple Validation Examples

The purpose of this section is to demonstrate using simple, single-output
functions, the claims 1− 4 made at the beginning of this section. The three
synthetic functions we are going to use have been introduced in [38]. The per-
formance of each run is evaluated by comparing the predictive mean µfr(x)
to the true response. The error measure of choice here is the Mean Square
Error (MSE) of S = 105 random samples drawn from p(x). Specifically, MSE
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is defined to be

MSE (µfr(·)) :=
1

SM

S
∑

s=1

M
∑

r=1

(

µfr(x
(s))− fr(x(s))

)2
, (50)

where x(s), s = 1, . . . , S are random samples from p(x). Those samples were
not used in the fitting procedure, hence MSE is a measure of the predictive
capabilities of the regression method.

1D non-stationary, discontinuous function. Consider the real function:

f1(x) =

{

sin
(

πx
5

)

+ 1
5
cos
(

4πx
5

)

, x ≤ 10
x
10
− 1, otherwise

, (51)

on the domain X = [0, 20]. For x ≤ 10, it varies with two different frequen-
cies. For x > 10 it is linear and finally it has a discontinuity at x = 10.

We learn this function with our framework usingN = 5 until various toler-
ances are reached. Fig. 1 compares the MSE of MGP with ASGC for various
numbers of observations. The observations shown for MGP correspond to
tolerances of δ = 10−1, 10−2, 10−5, 10−6, 10−7 and 10−8. The ǫ parameter of
ASGC (see [13]) is a lower bound of the sparse grid surpluses. The bigger ǫ is,
the more samples ASGC skips. As ǫ goes to zero, the ASGC approaches SGC.
For large values of ǫ though, ASGC fails to converge. Hence, ǫ determines the
balance between exploration and exploitation is ASGC. It is apparent that
ASGC is out-performed by MGP by almost an order of magnitude. Fig. 2
plots the predictive mean µf1(x) with 95% error bars for δ = 10−2, 10−4 and
10−6 along with the true response f1(x) where the symbols mark the position
of the observed data (left column). Notice, that the linear part is already
captured at δ = 10−2 (13 observations) and that the region x > 10 is not
sampled any further. Another important observation is that the error bars
are maximized in regions of space where the true error is bigger. This fact is
the empirical justification of their usage in the SED framework of Section 2.5.
As the lower levels of tolerance are reached, more and more samples are col-
lected inside the important regions and the discontinuity is finally resolved.
The right column of the same figure, plots the value of the inferred length
scale ℓ as a function of x (one length scale at each element). The linear region
is treated as a single element with a large length scale, while the rest of the
domain is fragmented in smaller elements with small length scales.
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Figure 1: The MSE in the prediction of f1(x) as a function of the observed samples for
MGP and ASGC for various ǫ.

2D function with local features. Let us now consider a two-dimensional real
function:

f2(x1, x2) = x1 exp
{

−x21 − x22
}

, (52)

on X = [−2, 6]2. This function is peculiar, in the sense that it has two local-
ized features inside the box [−2, 2]2, while it is practically zero everywhere
else. The choice of N in this example plays an important role since it deter-
mines the starting point of our algorithm. We have numerically verified that
for N = 5 there is a high probability of not observing the localized features.
For N = 10 and 20 the features are observed, albeit after a few fluctuations
which result in a higher number of observations being made. ASGC starting
from Level 1 (any ǫ) fails to correctly identify the location of the localized
features, since it does not sample inside [−2, 2]2. On the other hand, SGC
requires a very large number of observations. Here, we choose to report our
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Figure 2: Left column (a, c, e): comparison of the predictive mean µf1(x) (dashed blue
line) and 95% error bars (shaded grey area) with true response f1(x) (solid red line), where
the symbols mark the observed data. Right column (b, d, f): predicted length scale across
the domain. The rows correspond to tolerances δ = 10−2, 10−4 and 10−6 with number of
samples gathered 13, 25 and 94, respectively.
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results for N = 50. Fig. 3 plots the MSE for MGP and SGC as a function
of the number of observations. The MSE of ASGC is not reported since it
fails to identify the localized features when it starts from Level 1. The ob-
servations shown for MGP correspond to tolerances of δ = 10−3, 10−4, 10−5

and 10−6. As expected, SGC is out-performed by more than two orders of
magnitude. Fig. 4 shows the contour of the predictive mean µf2(x1, x2) for
tolerances δ = 10−4, 10−5 and 10−6 (right column) along with the decompo-
sition of the stochastic domain. The left column depicts the corresponding
observed input points (left column). Notice how the density of the observa-
tions is increasing in the important regions as lower δ’s are reached, gradually
revealing the local features.
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Figure 3: The MSE in the prediction of f2(x) as a function of the observed samples for
MGP and SGC. ASGC (ǫ = 10−3) is not reported since it fails to identify the localized
features.

6D function with unimportant dimensions. Finally, we consider the six-dimensional
real function:

f3(x1, x2, x3, x4, x5, x6) = exp
{

sin
(

(0.9(x1 + 0.48)10
)}

+ x2x3 + x4, (53)

28



on the hypercube X = [0, 1]6. f3 varies wildly as a function of x1 (see (a) of
Fig. 5), it is linear in x4, quadratic with respect to x2 and x3 and constant
for x5 and x6. We learn it using our scheme with N = 10. Fig. 6 plots the
MSE for MGP, SGC and ASGC as a function of the number of observations.
ASGC is out-performed by at least an order of magnitude. In Fig. 5, we
analyze the distribution of the observed input points. In particular, we plot
the histogram of the projection of the observed inputs on x1 (b), x5 (c) and
x6 (d) axes. Notice that MGP increases the sampling density in important
regions with respect to x1 while x5 and x6 are sampled uniformly. The
histograms for x2, x3 and x4 are similar to x5 and x6.
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Figure 4: Left column (a, c, e): predictive mean for f2(x) of the MGP (N = 50) and
decomposition of the domain for δ = 10−4, 10−5 and 10−6 (top to bottom). Right column
(b, d, f): observations made for the same δ.
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Figure 5: (a) The additive part of f3(x1, . . . , x6) that depends on x1; (b), (c) and (d) are
histograms of the projections of the observed inputs on the x1, x5 and x6 axes, respectively.
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MGP, SGC and ASGC (ǫ = 10−3).

32



3.2. Krainchnan-Orszag three-mode problem

Consider the system of ordinary differential equations [6]:

dy1
dt

= y1y3,

dy2
dt

= −y2y3,
dy3
dt

= −y21 + y22,

subject to random initial conditions at t = 0. This dynamical system is
particularly interesting because the response has a discontinuity at the planes
y1(0) = 0, y2(0) = 0. The deterministic solver we use is a 4th order Runge-
Kutta method as implemented in GNU Scientific Library [40]. We solve
the system for the time interval [0, 10] and record the response at time step
intervals of ∆t = 0.01. This results in a total of M = 300 outputs (100 for
each of the three dimensions of the response). We will consider three different
cases of increasing difficulty with one, two and three input dimensions. The
results we obtain will be compared to a MC estimate with 106 samples. Let
the MC mean and variance be mr,MC and vr,MC, respectively, r = 1, . . . , 300.
The error of the statistics will be evaluated using the (normalized) L2 norm

of the error in variance defined by:

EL2 =
1

M

M
∑

r=1

(vr,MC − µvr)
2 , (54)

where µvr is the predictive mean of vr (Eq. (32)). The results are compared
with SGC and ASGC.

One-dimensional Problem. In the one-dimensional case, we define the stochas-
tic initial conditions by:

y1(0) = 1, y2(0) = 0.1x, y3(0) = 0,

where
x ∼ U([−1, 1]),

with U([−1, 1]) being the uniform probability distribution over [−1, 1]. This
stochastic problem has a discontinuity at x = 0. We solve it for N = 5.
Fig. 7 shows the L2 norm of the error in variance for MGP, SGC and ASGC
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as a function of the number of observations. ASGC for ǫ = 10−1 fails to
converge and so it is not reported. MGP slightly out-performs ASGC and
SGC, especially when just a few samples are used. Fig. 8 depicts the pre-
diction of y2 (t = 10) and y3 (t = 10) at levels of tolerance δ = 10−3, 10−5

and 10−7. Again, we observe that the error bars are qualitatively equivalent
to the true error. Notice how the discontinuity is gradually resolved. Fig. 9
plots the predictive mean and variance of y3(t) as a function of time t along
with 95% error bars (see Eqs. (28) and (31)) and compares them with the
MC predictions. The error bars of the statistics are qualitatively correct
but - as expected by the independence assumption (Section 2.2) - they are
over-estimated. This situation is more pronounced in the predictions for the
statistics of the two and three dimensional problems.
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Figure 7: KO-1: the L2 norm of the error in variance as a function of the observed samples
for MGP, SGC and ASGC.
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Two-dimensional Problem. For the two-dimensional problem, the stochastic
initial conditions are defined by:

y1(0) = 1, y2(0) = 0.1x1, y3(0) = x2,

where
xi ∼ U([−1, 1]), i = 1, 2.

This problem has a line discontinuity at x1 = 0. We run the MGP framework
for N = 10. Fig. 10 shows the L2 norm of the error in variance for MGP, SGC
and ASGC as a function of the number of observations. At this example,
the performance of MGP and ASGC (ǫ = 10−2) is approximately the same.
Fig. 11 depicts the prediction at y3 (t = 10) along with the stochastic elements
at levels of tolerance δ = 10−3, 10−5 and 10−7. As a lower tolerance is
reached, the stochastic mesh adapts around the discontinuity increasing the
sampling density. Fig. 12 plots the predictive mean and variance of y3(t)
as a function of time t along with 95% error bars and compares it with the
MC prediction. Again, we notice that the error bars are over-estimated.
Finally, by using 104 samples of the surrogate, we provide a kernel density
approximation to the probability density function (PDF) of y2 (t = 10) and
y3 (t = 10) and compare it to an MC estimate with the same number of
samples (Fig. 13).

Three-dimensional Problem. The three-dimensional problem is defined to
have initial conditions:

y1(0) = x1, y2(0) = x2, y3(0) = x3,

where
xi ∼ U([−1, 1]), i = 1, 2, 3.

We run our framework for N = 20. Fig. 14 shows the L2 norm of the
error in variance for MGP, SGC and ASGC as a function of the number of
observations. ASGC with ǫ = 10−1 fails to converge. MGP out-performs
ASGC. Fig. 15 plots the predictive mean and variance of y3(t) as a function
of time t along with 95% error bars and compares it with the MC prediction.
Finally, Fig. 16 plots the kernel density estimate of the PDF of y2 (t = 10)
and y3 (t = 10) using 104 samples of the surrogate.
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Figure 8: KO-1: prediction (dashed blue) with 95% error bounds for tolerances (top to
bottom) δ = 10−3, 10−5 and 10−7 versus the true response (solid red) for y2 (t = 10) (left
column, a, c, e) and y3 (t = 10) (right column, b, d, f).
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Figure 9: KO-1: predictive mean (dashed blue) versus MC estimate (solid red) of the
mean (left column, a, c, e) and variance (right column, b, d, f) of y3(t) with 95% error
bounds for tolerances (top to bottom) δ = 10−3, 10−5 and 10−7.
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Figure 10: KO-2: the L2 norm of the error in variance as a function of the observed
samples for MGP, SGC and ASGC.

38



x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1
-1.2 -0.6 0 0.6 1.2

(a)

x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

(b)

x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1
-1.2 -0.6 0 0.6 1.2

(c)

x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

(d)

x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1
-1.2 -0.6 0 0.6 1.2

(e)

x1

x 2

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

(f)

Figure 11: KO-2: The prediction at y3 (t = 10) with the stochastic elements (left column,
a, c, e) and the observed samples (right column, b, d, f) for tolerances (top to bottom)
δ = 10−3, 10−5 and 10−7.
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Figure 12: KO-2: predictive mean (dashed blue) versus MC estimate (solid red) of the
mean (left column, a, c, e) and variance (right column, b, d, f) of y3(t) with 95% error
bars for tolerances (top to bottom) δ = 10−4, 10−6 and 10−8.
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Figure 13: KO-2: kernel density estimation of the PDF of y2 (t = 10) (left) and y3 (t = 10)
(right) using 105 samples.
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Figure 14: KO-3: the L2 norm of the error in variance as a function of the observed
samples for MGP, SGC and ASGC.
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Figure 15: KO-3: predictive mean (dashed blue) versus the MC estimate (solid red) of the
variance of y1(t) (left column, a, c, e) and y2(t) (right column, b, d, f) with 95% error
bars for tolerances (top to bottom) δ = 10−4, 10−6 and 10−8.
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Figure 16: KO-3: kernel density estimation of the PDF of y2 (t = 10) (left) and y3 (t = 10)
(right) using 105 samples.
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3.3. Elliptic Problem

In this section, we consider a simple stochastic elliptic problem [41]. Con-
sider the stochastic partial differential equation (SPDE):

−∇ · (aK(ω, ·)∇u(ω, ·)) = f(·), in D,

u(ω, ·) = 0, on ∂D,

where the physical domain is D = [0, 1]2. In order to avoid confusion with
the physical dimension x, we have chosen to denote the random variables
with ω instead of x. We choose a smooth deterministic load:

f(x, y) = 100 cos(x) sin(y),

and work with homogeneous boundary conditions. The deterministic prob-
lem is solved with the finite element method using 400 (20×20 grid) bilinear
quadrilateral elements. The random diffusion coefficient aK(ω, x) is con-
structed to have a one-dimensional dependence:

log(aK(ω, x, y)− 0.5) = 1 + ω1

(√
πL

2

)1/2

+

K
∑

k=2

ξkφk(x)ωk, (55)

where

ξk :=
(√

πL
)1/2

exp

(

−
(

⌊k
2
⌋πL

)2

8

)

, for k ≥ 2,

and

φk(x) :=







sin
(

⌊k
2
⌋πx

Lp

)

, if k is even,

cos
(

⌊k
2
⌋πx

Lp

)

, if k is odd,

⌊·⌋ being the integer part of real number. We choose the ωk, k = 1, . . . , K to
be independent identically distributed random variables:

ωk ∼ U([−
√
3,
√
3]).

Hence, the stochastic input space is Ω = [−
√
3,
√
3]K . Finally, we set:

Lp = max{1, 2Lc} and L =
Lc

Lp

,
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where Lc is called the correlation length. The expansion Eq. (55) resem-
bles the Karhunen-Loève expansion of a two-dimensional random field with
stationary covariance

Cov[log(aK − 0.5)]((x1, y1), (x2, y2)) = exp

(

−(x1 − x2)
2

L2
c

)

.

In this study, we set the correlation length to Lc = 0.6 and test the
convergence of our method for K = 10, 20 and 40 input dimensions. The
results for K = 10, 20 and 40 are evaluated by calculating the L2 error
in variance (Eq. (54)) using a plain MC estimate with 106 samples. The
performance is compared to ASGC for various ǫ. The K = 10, 20 and 40
cases are solved using N = 20, 40 and 80 up to a tolerance of 10−7, 10−5

and 10−4, respectively. Figures 17, 18 and 19 show the L2 error in variance for
each case. In all cases MGP outperforms ASGC, especially when the number
of samples is small. The error curves in Fig. 18 become asymptotically flat
for all methods (MGP and ASGC) as a result of the MC accuracy being
reached. Fig. 20 shows the convergence of the prediction for the variance
of MGP as the tolerance threshold is lowered to δ = 10−7. Subfigure (e) of
the same figure, plots the uncertainty of the variance σ2

vr (Eq. (33)) at that
tolerance. As already observed in previous examples, σ2

vr over-estimates the
true error. Fig. 21 tests the predictive capabilities of MGP for K = 10 at a
tolerance δ = 10−6 on a random input point. We notice a good agreement
with the true response.
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Figure 17: Elliptic, K = 10: The L2 norm of the error in variance of the elliptic problem
with K = 10 inputs as a function of the observed samples for MGP, SGC and ASGC.
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Figure 18: Elliptic, K = 20: The L2 norm of the error in variance of the elliptic problem
with K = 20 inputs as a function of the observed samples for MGP and ASGC.

47



0 0.5 1 1.5 2 2.5

x 10
5

10
−4

10
−3

10
−2

10
−1

10
0

Number of samples

L 2 n
or

m

 

 

MGP, N=80

ASGC, ε=10−1

ASGC, ε=10−2

ASGC, ε=10−3

Figure 19: Elliptic, K = 40: The L2 norm of the error in variance of the elliptic problem
with K = 40 inputs as a function of the observed samples for MGP and ASGC.
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Figure 20: Elliptic, K = 10: Convergence of the predicted variance as the tolerance
decreases. Subfigure (f) refers to MC results and subfigure (e) shows the uncertainty
associated with the predicted variance σ2

vr
at δ = 10−7.
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Figure 21: Elliptic, K = 10, δ = 10−6: Comparing the prediction (a) at a random input
point (d) with the true response (b). Subfigure (c) shows the corresponding predictive
variance.
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3.4. Natural Convection Problem

Consider the dimensionless form of the Oberbeck-Boussinesq approxima-
tion using the vorticity transport equation in stream-function formulation:

− ∂

∂t
∇2ψ − ∂ψ

∂y

∂

∂x
∇2ψ +

∂ψ

∂x

∂

∂y
∇2ψ = −Pr∇4ψ + RaPr

∂T

∂x
,

∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= ∇2T,

where Pr and Ra are the Prandtl and Rayleigh numbers, respectively. In this
formulation, the velocity field is given by:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (56)

We solve the problem in a two-dimensional square cavity X = [0, 1]2. We
impose no slip conditions to the boundary:

u(x, y) = 0, v(x, y) = 0, for (x, y) ∈ ∂X.

The two horizontal walls are considered adiabatic:

∂T (x, y)

∂y
= 0, for 0 ≤ x ≤ 1, y = 0, 1.

The right vertical wall (hot) is kept at a constant temperature:

T (1, y) = 0.5, for 0 ≤ y ≤ 1.

The left vertical wall (cold) is taken to be a one-dimensional Gaussian stochas-
tic process with mean −0.5 and exponential covariance

Cov[x1, x2] = s2 exp

{

−|x1 − x2|
LC

}

,

where s2 is the variance of the signal and LC the correlation length. Using
the Karhunen-Loève (KL) expansion, we may write

T (0, y;ω) = −0.5 +
∞
∑

k=1

√

λkφk(y)F
−1(ωk),
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where λk and φk(y) are the eigenvalues and eigenvectors of the covariance
function and F−1 is the inverse cumulative distribution function of N (0, 1)
and ωk are independent uniform random variables in [0, 1]. It is noted here
that λk and φk(y) are analytically available [42].

In this study, we set LC = 1 and keep only K = 4 or 8 terms in the KL
expansion. The parameters we use are Pr = 1 and Ra = 5000. The deter-
ministic problem is solved using the Nektar fluid dynamics code [43], which
utilizes spectral elements. The domain was decomposed in 240 quadrilateral
elements (12× 12 grid) and 4 spectral modes were used on each one. It has
been numerically verified that no more modes were necessary for convergence
of the spectral elements. The output is observed at 16 (4 × 4 grid) equidis-
tant mesh points on each element. This results in a total of 2401 outputs for
each of the physical quantities of interest (T, u, v and the pressure p). The
total number of output dimensions is thus M = 9604. For computational
convenience, we only work with temperature T and the u component of the
velocity, a total of 4802 output parameters. For K = 2 and 4, we run our
scheme until a tolerance δ = 10−5 is reached with N = 10. A total of 1393
and 14396 observations were made, respectively. For K = 8, we reach a
tolerance of δ = 10−3 which results in 829 observations being made. Fig. 22
compares the predicted standard deviations (std.) of u (top) and T (bottom)
for K = 8 with MC estimates using 80, 000 samples. The results are in good
agreement with the MC estimates. In Figs. 23, we draw a random sample
from the input distribution for the K = 4 case. We present the predictive
mean of T along with two std.’s and compare it to the absolute error. No-
tice that the two std.’s are qualitatively similar to the absolute error of the
prediction.
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Figure 22: Natural Convection: MGP prediction at tolerance level δ = 10−3 for the
standard deviation of the velocity u (top) and temperature T (bottom) compared to a
MC estimate for K = 8 input dimensions.
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Figure 23: Natural Convection (K = 4, δ = 10−5): Comparing the prediction at a random
input point with the true response.
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4. Conclusions

We have developed a novel, non-intrusive Bayesian scheme based on a
treed multi-output GP model that can be used in UQ tasks. The tree is built
in a sequential way that utilizes information contained only in the data ob-
served so far. Tree refinement depends on the observations through a global
measure of the uncertainty in the prediction, the inferred length scales as
well as the input probability distribution. A Sequential Experimental Design
technique based on the predictive uncertainty was also used to adaptively
select the most informative input points on each element. The final result is
a non-stationary, predictive distribution for the response of the underlying
system, that can be semi-analytically integrated to provide point estimates
and error bars for the statistics of interest. We have numerically demon-
strated that the framework can (1) capture non-stationary responses, (2)
locate discontinuities, (3) identify localized features and (4) reduce the sam-
pling frequency on unimportant input dimensions. The method was shown to
outperform SGC and ASGC in almost all numerical examples investigated,
especially when only a small number of observations were used.

The presented framework is particularly interesting, in that it can be ex-
tended in several ways that can improve its performance dramatically. From
a technical point of view several aspects require further numerical investiga-
tion: e.g. the dependence of the result on the choice of the maximum number
of samples per element N , the performance of the ALC experimental design
technique instead of the ALM scheme used in the current work, the depen-
dence of the final decomposition of the stochastic space on the refinement
criterion Eq. (40) for q 6= 1 and so on. Another important development would
be to replace the current multi-output GP model with a GP model that ex-
plicitly takes into account correlation between the outputs. Such an effort, is
expected to reduce the number of samples required significantly. Currently,
the GPs learnt on each element are dropped if the element is split in half.
The result is that each element is treated independently and the response is
not smooth along the element boundaries. Alternatively, another treed GP
model can be formulated in which the children of a node would learn the
residual of the response instead of the response itself. In such a way, the
upper nodes of the tree would model coarse features of the response, while
localized features would be resolved by the leaves of the tree. Finally, a great
deal of effort must be put in mathematically working out the error bounds
in the various statistics that result from the uncertainty of the prediction.
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As already mentioned in Section 2.2, the proper Bayesian way to account for
the uncertainty of the predicted statistics, would be via an MC procedure:
we would sample a complete response surface from the full model, integrate
it with respect to the input probability distribution and obtain a sample of
the statistics. The mathematical details of such a procedure are the subject
of our current research.

Appendix A. Implementation Details

In this appendix, we discuss several details with regards to the implemen-
tation of the UQ framework presented.

The nugget. The covariance function we use has the special form:

c(x(n),x(m); θ, g) = c(x(n),x(m); θ) + g2δnm, (A.1)

where c(·, ·; θ) is a normal covariance function depending on some hyper-
parameters θ, g2 > 0 and δnm is the Kronecker delta. Such a covariance
function corresponds to the case where f(x) is observed with additive Gaus-
sian noise with zero mean and variance g2 (see p. 16 of [22]). In the literature
of analysis of computer experiments using GPs, g2 is known as the nugget.
Many authors (e.g. [14], [15]), omit the nugget on the grounds that com-
puter codes are deterministic. Inclusion of the nugget, however, has been
observed to enhance numerical stability in factorizing the covariance ma-
trix [44, 17]. On our part, we have observed that numerical stability is
further improved, if a zero mean, g2 Gaussian noise is added to the scaled
observed responses Eq. (11). The effect of the nugget is the addition of a g2

term in the predictive variance of the scaled responses. A typical value of
the nugget we use in the numerical examples is g2 = 10−6. For a very recent
discussion on the importance of the nugget in computer modeling, see [45].

Maximizing the marginal likelihood. In this work, we make exclusive use of
the SE covariance function defined in Eq. (41). Its hyper-parameters are
the signal strength sf > 0 and the length scale of each stochastic input
ℓk > 0. Each stochastic element is associated with its local hyper-parameters
which are found by maximizing the joint marginal likelihood subject to the
positivity constraint. In order to achieve this in practice, we maximize with
respect to the logarithm of these quantities, i.e. we re-parameterize the
covariance function as:

θ1 = log sf , θk+1 = log ℓk.
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This results in an equivalent unconstrained optimization problem which we
solve using a Conjugate Gradient (CG) method [30], i.e. Eq. (12) with Θ =
R

K+1. It is important to notice that the nugget, g2, is not optimized. It
remains fixed to a given small value. Specifically, we used the Fletcher-
Reeves CG algorithm [46] as implemented in GSL [40]. The starting values
θ0 = (θ1,0, . . . , θK+1,0) of the optimization algorithm are chosen as follows:

1. If we fit a GP for the first time (i.e. using X itself as the first element),
we set θ1,0 = 0 for the signal parameter and

θk+1,0 = log

(

1

3
Lk

)

, k = 1, . . . , K,

for the length scale parameters, where Lk = bk − ak is the extent of X
along the k-dimension (Eq. (42)).

2. Otherwise, if Xi comes from splitting in half a parent element, we set
θ0 equal to the hyper-parameters of the parent element.

The optimization problem does not necessarily have a unique maximum. In
reality, different local maxima are associated with different interpretations of
the observed data set (Ch. 5 of [22]). In our numerical examples, we did not
encounter any problems with this optimization and the maxima we obtained
were quite robust. Powers of the response function are also treated as MGPs
with SE covariance function, albeit having their own hyper-parameters θ

q

(see Section 2.2). These are also selected by maximizing the marginal likeli-
hood.

Evaluation of the integrals. Finally, we come to the problem of computing
the necessary integrals for the evaluation of the statistics (Eqs. (24), (25)
and (26)). It is apparent that for general elements, input probability dis-
tribution and covariance function, these integrals have to be numerically
evaluated. We choose to work with square elements, uniform input probabil-
ity distribution and SE covariance function. With this choice, it is possible
to express those integrals analytically using the error function:

Φ(x) =
2√
π

∫ x

0

e−t2dt. (A.2)

In particular, let Xi = ×K
k=1[a

i
k, b

i
k] and p

i(z) be the uniform distribution on
Xi, i.e.

pi(z) =
1Xi(z)

∏K
k=1(b

i
k − aik)

. (A.3)
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Then, it is easy to show that (for q = 1):

ǫ1(x) = s2f

(π

2

)K/2
K
∏

k=1

ℓik

(

Φ

(

bik − xk√
2ℓik

)

− Φ

(

aik − xk√
2ℓik

))

(A.4)

and

ν1(x,y) =
(π

2

)K/2

s3f
√

c(x,y)
K
∏

k=1

ℓik

(

Φ

(

2bik − xk − yk
2ℓik

)

− Φ

(

2aik − xk − yk
2ℓik

))

.

(A.5)
The constant c1 (Eq. (25)), can be trivially shown to be

c1 = s2f . (A.6)

The integrals that pertain to the higher moments q > 1 are obtained similarly
by replacing the hyper-parameters with the ones that correspond to the MGP
representing the response raised to the q power f q.
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